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Using the Hartree-Fock method the wave functions of Li*, Be?™, 027, F, Na*, Mg2*, Al3", 827,
CI™, K*, Ca?*, Sc®* and Ti*" have been calculated for the free ion and the ion in a potential well. The
main result of these calculations is a contraction of the anion and an expansion of the cation due to the
external potential. A comparison of the calculations with an experimental determination of the electron
density distribution in NaCl and MgO shows qualitative agreement. The diamagnetic susceptibility y,
the dipole polarizability «,, and the Sternheimer antishielding factor y,, of the ions given above were
also calculated for the free ions and the “spherical potential” ions (SPI). The charged hollow sphere
model improves the theoretical values towards the properties determined by experiment.

Unter Verwendung der Hartree-Fock-Methode wurden analytische Wellenfunktionen fiir die
Tonen Li*, Be?*, 027, F~, Na*, Mg?*, A%, 8§27, CI™, K, Ca?*, $¢** und Ti** berechnet. Es wurden
sowohl die freien Ionen als auch Ionen im Potentialtopf untersucht. Es zeigt sich eine durch das dufSere
Potential hervorgerufene Kontraktion der Anionen und eine Expansion der Kationen. Der Vergleich
der Rechnungen mit experimentellen Bestimmungen der Elektronendichteverteilung in NaCl und
MgO zeigt qualitative Ubereinstimmung zwischen Theorie und Experiment. Ferner wurden die
diamagnetische Suszeptibilitit y, die Dipolpolarisierbarkeit o, und der Antishieldingfaktor y,, (Stern-
heimerfaktor) sowohl fiir die freien als auch fiir die durch ein kugelsymmetrisches Potential gestSrten
Ionen berechnet. Das hier benutzte Festkorpermodell der geladenen Hohlkugel ergibt Werte, die in
guter Ubereinstimmung mit dem Experiment sind.

Les fonctions d’onde de Li*, Be2*, 027, F~, Na®, Mg?*, Al3*, §27, CI", K", Ca?", Sc3* et Ti** ont
été calculées par la méthode de Hartree-Fock pour I'ion libre et pour I'ion dans un puit de potentiel.
Le résultat essentiel de ces calculs montre une contraction de 1’anion et une expansion du cation sous
Peffet du potentiel extérieur. Les densités électroniques calculées et celles obtenues expérimentalement
dans NaCl et MgO sont en accord qualitatif. La susceptibilit¢ diamagnétique y, la polarisabilité
dipolaire a,, et le facteur anti-écran de Sterneimer y,, des ions ci-dessus ont été calculés pour les ions
libres et pour les ions a «potentiel sphérique» (SPI). Le modéle de la sphére creuse chargée améliore
les valeurs théoriques par rapport aux données expérimentales.

1. Introduction

Many physical preperties of ionic crystals, as the distribution of electrons, the
diamagnetic susceptibility, the dipole polarizability or the quadrupole polariz-
ability of an ionic crystal can be calculated in a first approximation by summing
up the corresponding values calculated for the free ions. Free ion properties are

* D 17 (E. Paschalis, 1967).
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obtained using the Hartree-Fock-SCF method. A critical comparison of the
experiment and the calculation on the basis of the free ion model by HF-SCF-
procedure is not satisfactory. Therefore it was decided to evaluate a number of
physical properties of ionic crystals through HF-SCF solutions for ions in a
potential of spherical symmetry (SPI).

The physical model for our calculations is a very simple one. To our knowledge
this model was first used by Watson [1] to find analytical HF-SCF wave functions
for the O?7 ion. L. Sachs [2] has used the model to calculate the diamagnetic
susceptibility of LiF and NaF. Somewhat different approaches to the problem
“ions in crystals” have been proposed by Yamashita and Kojima [3] and by
Kristoffel [4].

The calculations reported here were carried out for the closed shell ions
Lit, Be?*, 0?7, F~, Na*, Mg?*, A1**, 827, CI-, K*, Ca®", Sc** and Ti*". The
program of C. C. J. Roothaan [5] was modified for our purpose [6], to calculate
analytical SCF-HF-Roothaan [7, 8] wave functions for the free ions and the
SP-ions of interest.

II. The Hartree-Fock-Equation and the Model for the Crystal Potential

For the free ion problem the Hamiltonian of interest has to be formulated as:

" N 1 Z N
i=1 j=

where Z = nuclear charge, V; = Nabla operator for the i’th electron, r; and r;; are
the distances of the ’th electron from the nucleus and from the j’th electron resp
Hartree atomic units are used throughout this paper.

In the approximation presented, we have choosen a spherical symmetric
potential around the ion of interest to simulate the environment of the ions in the
crystal. This means that the ion is embedded in a hollow sphere which carries an
electric charge of the same magnitude but opposite sign as the ion considered.
This very simple model fulfills the following conditions: It preserves the symmetry
of the free ion and the electroneutrality of the crystal. Furthermore it can be gener-
alized in order to take into account the actual symmetry of the ions in the crystal.
The main disadvantages of the model are the neglection of the overlap terms and
the somewhat artificial introduction of a radius r, of the counter charge sphere.

The charged sphere around the ion creates a potential of the form:

1
- 1
Fij

1

V=n/r, for r=r,,

@

V=n/r for rzr,.

We have choosen the number n of charges as: gy, = — o for all ions. Partial
compensation of the ionic charge by the charged sphere was used by Watson [1],
for the 0%~ problem. Fig. 1 shows the physical model stated above. Within the
sphere with the radius r, the potential of the charged sphere is constant. Out of i,
it goes with 1/r to zero like the potential of a point charge. The Hamiltonian of the
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ion in the crystal is then:

~ N 1 Z n 1 ¥ 1
fa=-% (FreZol)e g 3 o ®

1;1(2 e T 2 i.jz=:1 Tij

~ al 1 VA n 1 ¥ 1
A,=-Y (=r+2 - R 4
ot i; (2 o i r-i>+ 2 i,jz=:1 rij @

In the frame of SCF-Roothaan-theory the one electron functions are:

D= Z Cupoxa (5)
p
with
Apaa> 3, 0) = Ry, (1) Y3,(3, 9) 6
and
R, =[Q2n;) 17122, )" 12 e~ Lexp(— {5,7), (7

i4 indicates the shell, C;,, is the expansion coefficient for the p’th basis function,
o (magnetic quantum number) represents the subspecies of the symmetry 4;

K J\,\chars%e:e rl:ollow

Fig. 1. The potential of a charged hollow sphere with a radius r, as a function of

R;,(r) and Y,,(8, @) are the radial and the angular part of the basis function resp.
The radial basis function is a normalized Slater-type orbital, characterized by the
principal quantum number n,, and the orbital exponent {;,. Y,,(3, @) are the
normalized spherical harmonics.

First the wave functions for the free ions considered have been refined by (;,,
and C;,,, variation procedure. As a start set the wave functions for the closed shell
ions given by Clementi [9] and by Clementi et al. [10, 11] have been used. Good
agreement with Clementi’s coefficients has been found. In some cases slight
improvement in energy was reached. Using the optimized free ion basis functions
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the expansion coefficients have been made self consistent for the ion in the potential.
We have also optimized the basis functions for one ion (Be?") in the potential.
This procedure however has not influenced the energy considerably.

The following set of parameters has been choosen for the free ion and for the
SP-ion too:

Closed shell 1s%:4 basis functions;

closed shell 1522s%2p5: 5s- and 5p-basis functions for the anions and 5s- and
4 p-basis functions for the cations;

closed shell 1522s?2p%3s23pS: 7s- and 6 p-basis functions.

The parameter r, i.e. the radius of the sphere which carries the counter charge
of the ion considered, was varied in discrete steps. For six different radii the

0.210 028675

“C3p ~Cast

0.206 0.2667¢

0.202 0.28667
0,198 028663
0.194 0,28659
n [au] ————n
0.190 0.28655
16 1.7 18 19 20 21 22 23 24

Fig. 2. Expansion coefficients of Ca®* as a function of the hollow sphere radius ,

SP-ion wave functions have been calculated (except for K for which only four
radii have been considered).

Table 1 shows the orbital exponents and the principal quantum numbers of
the basis functions. These orbital exponents have been used for the calculation
of the expansion coefficients of the SP-ions. The results of these calculations are
listed in Table 2 together with the orbital energies and the total energy of the
crystal ions. The free ion total energies are given for comparison. In each case one
of the radii used is the ion radius, 7, ;,, as given by Pauling [12]. It shows up that
for all radii lying between rg ;, and rg .., in the calculations most of the para-
meters C;;, can be interpolated. In Fig. 2 the change of two C;;,, as a function of
ro 1s shown graphically. It should be mentioned that in some cases such an inter-
polation is doubtful. However in these cases these basis functions contribute very
little to the energy.
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Table 2. Expansion coefficients C,;,, orbital energies, and total energy for the free and the crystal ions

Li* Be?* o
c 1s Cls C is CZS C2 P
ro o} o] o0?
1.06423 0.83892 0.89703 0.20153 0.59510
—0.21832 0.16445 0.06383 0.01235 0.29159
0.15640 0.02622 0.00417 —0.70969 0.51530
0.01289 —0.01896 0.05143 0.08239 —0.13422
—0.00059 —0.40236 0.01046
—& 2.79236 5.66714 20.0476 0.6286 —0.1255
—E. 7.2364137 13.611292 74.48442
o 1.247 0.700 2.646
0.86603 0.45234 0.89246 0.18957 0.75442
—0.05216 0.34886 0.06230 0.01239 0.25982
0.13366 —0.00582 0.00553 —0.62987 —0.12482
0.07392 0.23533 0.05795 0.07659 0.18264
' —0.00096 —0.47698 0.01668
—&; 2.00321 2.93343 20.16716 0.93979 0.22474
—E,, 5.6451517 8.0544506 81.511375
*o 1.134 0.640 2.570
0.81315 0.36057 0.89234 0.18680 0.76505
—0.01638 0.37507 0.06234 0.01394 0.25923
0.13087 —0.00742 0.00560 —0.63429 —-0.09106
0.09635 0.30792 0.05803 0.07945 0.13776
—0.00098 —0.47329 0.01686
—& 1.93237 2.73168 20.15721 0.94339 0.22676
—E., 5.4955386 7.6118464 81.685078
ro 1.020 0.590 2.495
0.75945 0.27261 0.89212 0.18369 0.77526
0.01151 0.39362 0.06240 0.01572 0.25909
0.13111 —0.00694 0.00568 —0.63982 —0.05656
0.12535 0.38204 0.05812 0.08276 0.09225
—0.00101 —0.46860 0.01696
—&; 1.84975 2.54945 20.14632 0.94702 0.22851
—E, 5.3174510 7.2025899 . 81.863175

tot

2 Clementi et al. [10].

F~ Na*
Cls CZs C2p Cls C25 C2p
to o0 o0
0.89484 - —0.20216 —0.49246 0.82735 —0.17405 0.53073
0.03599 —0.00801 —0.30720 0.06332 —0.03229 0.30998
0.003%96 0.62921 —0.06074 0.00628 0.47480 0.22400
0.08595 —0.09699 —0.26372 0.13011 —0.13113 0.01344
—0.00035 0.48245 —0.01704 —~0.00116 0.62651
—& 25.82940 1.07432 0.18076 40.75990 3.07375 1.79720
—E 99.459363 161.67689

tot




Wave Functions for Ions in Crystals 387
Table 2 (continued)
F- Na*
Cls CZS C2p Cls C2s C2p
o 2.646 1.984
0.89456 --0.20080 —0.34476 0.82736 —0.17432 0.52078
0.03609 —0.00792 —0.32578 0.06332 —0.03216 0.31296
0.00417 0.61647 -0.42223 0.00626 0.47506 0.23241
0.08610 —0.09558 0.00458 0.13011 —0.13103 0.01298
—0.00040 0.49422 —0.01587 —0.00115 0.62625
—&;, 26.08143 1.37259 0.48161 40.26465 2.57478 1.29865
—E,, 103.14911 156.64369
ro 2.570 1.795
0.89454 —0.20035 —0.35136 0.82737 —0.17478 0.51256
0.03610 —0.00812 —0.32380 0.06332 —0.03188 0.31531
0.00419 0.61649 -0.42214 0.00624 0.47492 0.23947
0.08612 —0.09594 0.01133 0.13011 —0.13073 0.01263
--0.00040 0.49428 -0.01624 —0.00115 0.62633
—&; 26.08020 1.37643 0.48510 40.22002 2.52659 1.25094
—E,, 103.24729 156.12230
o 2.513 1.607
0.89451 —0.19995 —0.35793 0.82740 —0.17594 0.49823
0.03611 ~0.00830 —0.32202 0.06330 ~0.03117 0.31922
0.00421 0.61667 —0.41985 0.00620 0.47415 0.25191
0.08613 -0.09630 0.01553 0.13010 —0.12993 0.01204
—0.00041 0.49419 —0.01656 —0.00113 0.62688
—&; 26.07882 1.37926 0.48760 40.17097 247064 1.19597
—E, 103.32387 155.48832
Mg?* A"
Cls C25 CZp Cls C2.s C2p
o o feo)
1.03536 —0.22276 0.54565 0.838794 —0.22236 0.55606
0.03700 —-0.02673 0.28809 0.05135 -0.01824 0.26195
0.00714 0.42858 0.22063 0.00584 0.39526 0.22887
-0.08025 —0.08939 0.01024 0.07365 -0.12443 0.00876
-0.00189 0.66506 —0.00118 0.71084
—&; 49.76833 4.48278 3.00594 59.79106 6.15103 4.47222
—E. 198.83071 240.00032
ro 1.361 1.039
1.03546 —0.22746 0.48001 0.88827 -0.24195 0.37463
0:03698 —0.02450 0.30525 0.05124 —0.00624 0.30749
0.00699 0.42399 0.27656 0.00541 0.36318 0.38246
—0.08029 —0.08516 0.00780 0.07354 —0.10570 0.00236
—0.00182 0.66871 —0.00097 0.73550
—&; 48.36374 3.05047 1.57820 57.11067 3.38767 1.72422
—Ey, 184.21409 211.46081

27 Theoret. chim. Acta (Berl)) Vol.
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Table 2 (continued)

Mg*" AR
Cls C2s CZp Cls C2s C2p
Yo 1.228 0.945
1.03558 —0.23224 0.43803 0.88857 —0.25504 0.28687
0.03695 —0.02217 0.31523 0.05112 0.00192 0.32682
0.00687 0.41789 0.31309 0.00514 0.33884 0.45858
—0.08035 —0.08062 0.00640 0.07341 —-0.09264 —0.00027
—0.00176 0.67368 —0.00085 0.75444
—&; 48.25657 2.92190 1.45341 56.95461 3.18394 1.52961
—E 182.70312 208.86374
Yo 1.096 0.850
1.03583 —0.24114 0.37433 0.88910 —0.27530 0.16532
0.03687 —0.01777 0.32920 0.05091 0.01470 0.35107
0.00666 0.40539 0.36932 0.00472 0.29827 0.56555
—0.08048 —0.07198 0.00448 0.07317 —-0.07184 —0.00350
—0.00166 0.68394 —0.00065 0.78612
—& 48.15185 2.78118 1.31917 56.81129 2.97040 1.32943
—E, 180.90620 205.82916
S*”
C1s C2s CZP C3P
o
0.92660 —0.26494 0.07909 0.65868 —0.14170
0.03566 —0.00506 —0.00141 0.03797 —0.00678
0.00435 0.79698 —0.22967 0.00953 0.18654
0.04736 —0.13060 0.03285 0.00003 0.49526
0.00016 0.00806 0.68777 0.37200 —0.08085
—0.00008 —0.00106 0.46587 —0.00124 0.51661
—0.00108 0.35034 —0.18650
& 91.46614 8.46134 0.36254 6.14172 —0.12956
—E,,, : 397.34251
*o 3.817
0.92650 ~0.26480 0.07739 0.65813 —0.17159
0.03570 —~0.00503 - 0.00204 0.03798 —0.00107
0.00439 0.79567 —0.21868 0.01002 —0.05031
0.04742 —0.13032 0.03013 —0.00001 0.22339
0.00016 0.00900 0.63721 0.37235 —0.03683
—0.00008 —0.00114 0.51239 —0.00118 091773
—0.00110 0.35106 —0.18024
—& 91.67192 8.68204 0.68230 6.36385 0.19884
—Eg, 406.43538
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Table 2 (continued)
s
Cls C23 CSs CZp C3p
Yo 3.477
0.92647 —0.26477 0.08064 0.65787 —0.17488
0.03571 —0.00501 —0.00364 0.03798 —0.00112
0.00440 0.79528 —0.21355 0.01052 —0.06559
0.04744 —0.13023 0.02662 0.00001 0.17327
0.00016 0.00935 0.65244 0.37244 —0.03695
—0.00008 —0.00121 0.50011 —0.00135 0.96504
—0.00110 0.35125 —0.18962 )
—&; 91.64421 8.66118 0.68811 6.34261 0.20318
—E 407.23991
ro 3.137
0.92644 —-0.26473 0.08623 0.65745 —0.17685
0.03573 —0.00499 —0.00622 0.03798 —0.00209
0.00442 -0.79468 —0.20626 0.01141 —-0.05656
0.04746 —0.13008 0.02111 0.00004 0.12328
0.00016 0.00991 0.68362 0.37257 —0.04412
—0.00008 —0.00133 0.47414 —0.00169 0.99172
—0.00111 0.35152 —0.20603
—&, 91.60249 8.63036 0.69235 6.31096 0.20312
—E, 408.17367
Cl”
Ciy; Cys Cs, Csp Csp
ro o0
0.91476 —0.25536 0.07479 0.65426 —0.16262
0.01841 —0.00573 0.00192 0.03730 —0.00938
0.08149 —0.13944 0.04489 0.37184 —0.11307
0.00335 0.89295 —-0.28811 0.01282 0.32551
—0.00083 0.23869 —0.15134 —0.00270 0.50974
0.00007 0.00633 0.69647 0.00053 0.31979
—0.00004 —0.00040 045171
—&, 104.50479 10.22848 0.73263 7.69489 0.14968
—Eyo 459.57669
To 3.761
0.91474 —0.25531 0.07471 0.65412 —0.17116
0.01842 —0.00573 0.00169 0.03731 —0.00741
0.08151 —0.13940 0.04408 0.37192 —0.09907
0.00336 0.89265 —0.28524 0.01295 0.26880
—0.00083 0.23886 —0.15124 —0.00269 0.63124
0.00007 0.00656 0.68726 0.00052 0.22401
—0.00004 —0.00043 0.46040
—& 104.69533 10.42347 0.95238 7.89008 0.37041
—Eia 464.29694

27*
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Table 2 (continued)

Ct-
Cls CZs C3s C2p C3p
o 3.420
091472 —0.25529 0.07533 0.65402 —0.17357
0.01843 —0.00573 0.00134 0.03731 ~0.00706
0.08151 —0.13937 0.04320 0.37196 —0.09651
0.00336 0.89249 —0.28343 0.01308 0.25542
—0.00084 0.23896 —0.15365 —0.00272 0.66782
0.00007 0.00669 0.68933 0.00052 0.19115
—0.00004 —0.00046 0.45903
—&; 104.68797 10.41896 0.95975 7.88549 0.37698
~Ep 464.73356
To 3.080
0.91471 —0.25526 0.07671 0.65387 —0.17583
0.01843 —0.00573 0.00067 0.03731 —0.00698
0.08152 —0.13932 0.04159 0.37202 —0.09593
0.00337 0.89223 —0.28056 0.01334 0.24663
—0.00084 0.23910 —0.15899 —0.00280 0.70423
0.00006 0.00691 0.69738 0.00053 0.15378
—0.00004 —0.00051 0.45273
—&;,; 104.67193 10.40772 0.96564 7.87400 0.38081
—E, 465.24467
K+
Cls CZs C3s C2p C3p
7 o0
0.91901 —-0.27132 0.08650 0.66806 —0.21089
0.02922 —0.00423 0.00308 0.04231 —0.01112
0.06493 —0.14232 0.05466 0.34668 —0.12165
0.00125 0.98566 —0.36384 0.01418 0.61218
0.00022 0.14813 —0.15659 —0.01345 0.55384
—0.00033 0.00596 0.65939 0.00898 ~0.05885
0.00012 —0.00008 0.50599
—&; 133.75322 14.70886 1.96383 11.73901 1.17049
—E,, 599.01722
o 2513
0.91902 —0.27134 0.08605 0.66812 —0.20862
0.02922 —0.00423 0.00336 0.04231 —-0.01167
0.06493 —~0.14233 0.05520 0.34664 —0.12497
0.00125 0.98574 —0.36493 0.01412 0.62887
0.00023 0.14809 —0.15515 —-0.01344 0.43476
—-0.00033 0.00589 0.65832 0.00898 0.05204
0.00012 —0.00006 0.50654
—&; 133.37484 14.32851 1.57670 11.35874 0.78413

—E, 591.86598
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Table 2 (continued)

K*
Cls C2: C3s C2p C3p
ro 2450
0.91902 —027135 0.08595 0.66813 —0.20837
0.02922 —0.00423 0.00342. 0.04231 ~001171
0.06493 —0.14233 0.05531 0.34664 —0.12521
0.00125 0.98575 ~0.36514 0.01411 0.63042
0.00022 0.14808 —0.15480 ~0.01342 0.42097
—0.00033 0.00587 0.65790 0.00897 0.06523
0.00012 —0.00006 0.50681
—&; 133.36851 14.32178 1.56878 11.35204 0.77638
—E 591.69448
ry 2.050
0.91904 —0.27138 0.08444 0.66826 —0.20630
0.02921 —0.00423 0.00427 0.04230 001187
0.06492 —0.14236 0.05685 0.34656 -0.12615
0.00124 0.98597 -0.36788 0.01391 0.64023
0.00023 0.14797 —0.14960 ~0.01321 0.29956
—0.00033 0.00568 0.65037 0.00883 0.18467
0.00012 —~0.00000 0.51208
—g;; 133.33036 14.27849 1.51114 11.30909 0.72130
—Epy 590.32027
Ca?*
Cls C2s C3S CZp C3p
ro 0
0.95228 —0.28656 0.09678 0.62610 ~0.20971
0.00704 0.00195 0.00013 0.07016 —0.02174
0.05358 —~0.16025 0.06630 0.35384 —0.14293
—0.00114 0.90810 —0.35630 0.02539 0.54121
0.00103 0.25745 —0.17676 -0.02129 0.54720
—0.00039 0.01037 0.85851 0.01160 0.01796
0.00015 —0.00252 0.28137
—& 149.91566 17.36958 277785 14.17891 1.87676
~E 676.15367
o 2.000
0.95229 —0.28660 0.09561 0.62633 -0.20008
0.00703 0.00195 0.00054 0.07015 —0.02463
0.05357 —0.16032 0.06877 0.35371 —0.15484
—0.00116 0.90846 —0.36140 0.02510 0.60002
0.00104 0.25727 —0.16818 —0.02116 0.28065
—0.00039 0.01004 0.84309 0.01157 0.24792
0.00015 ~0.00240 0.29420
—&;; 148.99001 16.43441 1.81683 13.24453 0.92065

—E 658.24623
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Table 2 (continued)

Ca?*
Cis C?_s C3s CZp C3p
o 1.871
0.95230 —0.28663 0.05499 0.62645 —0.19775
0.00703 0.00195 0.00074 0.07015 —0.02503
0.05357 —0.16037 0.06996 0.35366 —0.15657
-—0.00116 0.90866 ~0.36375 0.02491 0.61326
0.00105 0.25716 —0.16375 —0.02101 0.20020
—0.00039 0.00986 0.83423 0.01149 0.32097
0.00015 —0.00233 0.30167
~&;; 148.95713 16.39631 1.76638 13.20690 0.87307
—E, 657.05292
o 1.680
0.95232 —0.28668 0.09355 0.62674 —0.19419
0.00703 0.00195 0.00117 0.07013 —0.02517
0.05355 —0.16047 0.07252 0.35353 —-0.15731
—0.00118 0.90915 —-0.36866 0.02443 0.63027
0.00106 0.25690 —0.15365 —0.02059 0.06072
—0.00039 0.00945 0.81261 0.01128 0.45236
0.00015 —0.00216 0.32007
—&, 148.91991 16.34659 1.69009 13.15833 0.80372
—Eq 655.03063
Sc3*
Cls C2s C?:s CZp C3p
To o8/
0.94343 —0.28510 0.10095 0.68501 —~0.24184
0.01951 ~0.00139 0.00114 0.04663 —-0.01518
0.04734 —0.15627 0.06352 0.31870 —0.14806
0.00184 0.98632 —0.39260 0.01302 0.43061
—0.00048 0.17459 —0.22860 —0.00416 0.62868
0.00004 —0.00519 0.40831 0.00106 0.05548
—0.00004 0.00439 0.80216
—&; 167.09071 20.29577 3.71329 16.88289 2.70359
—E, 758.21453
fo 1.720
0.94348 —0.28525 0.09753 0.68541 —0.22749
0.01949 -0.00136 0.00285 0.04662 —0.01838
0.04731 —0.15631 0.06850 0.31851 —0.16954
0.00182 0.98688 —0.40249 0.01245 0.53408
—0.00046 0.17450 —0.20732 -0.00392 0.36128
0.00004 ~0.00594 0.38149 0.00101 0.25748
—0.00004 0.00456 0.81688
—&; 165.48650 18.67108 2.04261 15.25981 1.04396
—E 727.02658
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Table 2 (continued)

Sc3*
Cls C2s C3s CZp C3p
o 1.531
0.94353 —0.28539 0.09348 0.68581 —0.22101
0.01948 —0.00134 0.00476 0.04662 —0.01882
0.04728 —0.15638 0.07400 0.31835 -0.17321
0.00179 0.98748 —0.41299 0.01176 0.57037
—0.00044 0.17438 —0.18104 —0.00355 0.22408
0.00003 —0.00671 0.34418 0.00092 0.37350
—0.00004 0.00474 0.83834
—&;, 165.40306 18.56637 1.89814 15.15698 091163
—E, 723.39318
Ty 1.380
0.94359 —0.28556 0.08786 0.68635 —0.21522
0.01945 -0.00133 0.00730 0.04662 —0.01840
0.04724 —0.15648 0.08126 0.31816 —0.17108
0.00175 0.98829 —0.42642 0.01074 0.58888
—0.00042 0.17422 —0.14370 —0.00294 0.10200
0.00002 —0.00774 0.28771 0.00073 0.48662
—0.00003 0.00501 0.87149
—&; 165.36321 18.49758 1.78454 15.09095 0.81457
~E,, 719.98088 .
Ti*"
Cls C2s C’_’:s C2p C3p
To 00
0.94983 —0.29145 0.11160 0.68807 —0.24715
0.02169 —0.00104 —0.00155 0.04941 —0.01944
0.03613 —0.15898 0.05779 0.32149 —0.18992
0.00388 0.93886 —0.36507 —0.00687 0.31024
—0.00188 0.22675 —0.26991 0.00699 0.82384
0.00062 0.00379 0.52203 —0.00149 0.01242
—0.00028 0.00186 0.68864
—& 185.27865 23.48742 4.76832 19.85129 3.65101
—E,, 845.18984
o 1.410
0.94995 —-0.29175 0.10026 0.68895 —0.23079
0.02165 —0.00102 0.00377 0.04944 —0.02078
0.03606 —0.15921 0.07425 0.32137 —-0.20116
0.00381 0.94040 —0.39604 —0.00840 0.36005
—0.00183 0.22638 —0.20890 0.00735 0.67616
0.00061 0.00183 0.43069 —0.00155 0.17489
—0.00028 0.00246 0.74889
—&;; 182.80470 20.95442 2.12685 17.32392 1.03866

—E 794.77290
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Table 2 (continued)

Ti**
C 1s CZs CSs CZ P C 3p
Yo 1.285
0.95002 —0.29192 0.09363 0.68950 ~0.22797
0.02163 —0.00102 0.00672 0.04946 —0.01894
0.03601 —0.15937 0.08331 0.32130 —0.18987
0.00377 0.94136 —0.41255 —0.00937 0.34944
—0.00180 0.22612 —0.17209 0.00761 0.63792
0.00061 0.00068 0.37030 —~0.00157 0.23252
—0.00028 0.00283 0.78946
—& 182.75140 20.86506 1.98589 17.23824 0.91599
—E,, 790.53165
*o 1.090
0.95020 —0.29229 0.07687 0.69098 —0.22387
0.02157 —0.00103 0.01362 0.04950 —0.01264
0.03590 —0.15988 0.10416 0.32112 ~0.14681
0.00366 0.94402 —0.44862 —0.01213 0.28305
—0.00172 0.22527 —0.07621 0.00853 0.58883
0.00059 —0.00227 0.19633 —0.00171 0.34088
—0.00027 0.00386 0.90807
—&;; 182.72684 20.74330 1.77983 17.12721 0.75793
—En 782.08809

1. Diamagnetic Susceptibility, Dipole Polarizability and Antishielding Factor

As shown by Van Vleck [13] the diamagnetic susceptibility, y, may be
calculated by perturbation methods. For closed shell ions with N electrons

¥ results as: 2 N

— vy
X - 6mc2 pgl rP (8)

where e is the electron charge, m the electron mass, ¢ the velocity of light and r,,
the radial coordinate of the electron p. Eq. (8) shows that the diamagnetic sus-
ceptibility of an ion is a sensitive measure for the mean diameter of the orbitals.
Both y-values for the free ion and for the ion in the potential have been calculated.
The matrix elements: _
”12; =Dl r§|¢ila>

are easily obtained from the analytical wave functions. Crystal ion susceptibilities
have been calculated by SCF methods first by L. Sachs for Na™ and F~ [2].

From the different multipole polarizabilities we have calculated only the dipole
polarizability «,. During the last years a number of calculations of a, of closed
shell ions have been published and the literature about these calculations is
extensively covered by Langhoff and Hurst [14].

We have used perturbation theory in calculating the dipole polarizabilities
for the free ions and the ions in the crystals. The energy created by the external
field F within the polarizable ions is proportional to F:

1
AE = “EadFQA
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The proportionality factor a,is called the dipole polarizability. From Buckingham’s
theory [15] the polarizability follows in the form:

u= s L®Y [aul. )

The summation over ¢ has to consider all occupied states. Eq. (9) takes the fact
into consideration that the polarization of the electrons depends on the quantum
level g they occupy.

As a third parameter we have calculated with the aid of “crystal ion” wave
functions also the antishielding factor y,, (Sternheimer factor); unfortunately this
factor is not directly accesible to the experiment. On the other side the inter-
pretation of quadrupole coupling constant, in view of the nuclear quadrupole
moment or the crystal field, depends heavely on the antishielding factor used.
Beside the basic work by Sternheimer [16] numerous calculations of this factor
have been performed [17]. The method, Sternheimer has used, is the numerical
integration of the differential equations obtained by perturbation theory. Another
method is the use of the variational procedure first discussed by Das and Bersohn
[18]. In this paper the method given by Das and Bersohn in its simplest form
is applied.

Per definitionem the antishielding factor y, is defined by the equation

Vzz=V2z(1— 7). (10)

V2, is the electric field gradient created by all electric charges outside the ion
considered at the site of its nucleus. This external gradient is amplified by the
polarized core and therefore an effective gradient V,, interacts with the nuclear
quadrupole moment. For most ions this amplification factor is bigger than one
(antishielding). Symmetry considerations show that the s-orbitals contribute to the
quadrupole shielding only through the angular excitations ns—d. The p-orbitals
undergo not only an angular but also a radial excitation namely np— f and
np— p respectively [18].

During the last years the calculation of the antishielding factor for free ions
have been considerably improved by the coupled Hartree-Fock approximation,
see Dalgarno [17]. Burns and Wikner [19] using crystal ion wave functions; as
those of Watson for O?” [1], of Yamashita and Kojima for F~ [3], etc., have
calculated the antishielding factor for a few crystal ions. The differences between
the y-values obtained using the “contracted” wave functions and the free ion wave
functions are very considerable.

IV. Discussion

1. The Electron Density Distribution

From Table 2 it follows that the total energy of the ions in the crystal changes
appreciably compared with the free ions values. This change seems to be a steady
one as a function of the radius r,, of the potential well. In Fig. 3 the difference of the
total energy of the free ion K™ and the SP-ion is shown as a function of r,, (charged
sphere radius). For the radius r, — 0, the energy approaches the total energy of the
free value of the rare gas atom next to the ion considered.
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The radial electron distribution of the ions can easily be calculated from the
functions given in Egs. (5—7) and from the coefficients given in Tables 1 and 2. The
radial electron density is given by

Pry=3 ) Cilpcilqrlep(r) R;,(n N, (11)

i’ pg
with N, = the occupation number of the shell iA (with the symmetry 2). In Fig. 4
P%(r) of CI” and Ca?" are given for the free ion and the SP-ion with a radius of the
potential well r,=3.420 and 1.871 resp. One recognizes that the perturbation
due to the potential generates a contraction of the anions and an expansion for the
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Fig. 3. The difference of the total energies of the potassium ion within the potential well, E,,(SPT), and

the free ion, E,,, (F), as a function of r,
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cations. This is an expected result, since the charged hollow sphere reduces or
raises the total Hartree-Fock potential for the cations and anions resp. This
perturbation of the radial electron density as a function of the radius of the hollow
sphere is given in Fig. 5. These curves show the same behaviour as those of the
energy (see Fig. 3); the bigger the radius the smaller the deviation from the free ion
value. Given the difference AP?(r) defined as:

AP*(r) = Py (r) — PE(r) (12)

where P2y (r) and P2(r) is the radial electron density of the SP- and the free ion

2.24 0.70
i - 2
2 _free_ion value (C)  PL (z)
R tr,) SPI
SPr''*’r=1,900 r=3.400)
220 o 066
\ -

2.16 \

062
1] {Ca 2¢
212 / 058

.
2,08 \ / 054

\ x
2.04 050
.. x
2+ /
_ free ion value (Ca”) r, [ou] ———»
2.00 [221°
15 20 24 28 32 3.6 40 44

Fig. 5. The radial electron density P&, (r) of Ca®” and Cl™ at r = 1.900 and r = 3.400 resp., as a function
of the hollow sphere radius r,. ® Ca%*; x Cl™

resp., one recognizes the expansion or contraction of the ions by considering the
sign of AP?(r).

For comparison with the experimental evidence we consider the results of
Burley’s investigation of the electron density distribution in MgO-crystals [20].
The electron density distribution for Mg2™ in this compound obtained by Fourier
transformation of the scattering factor for the free ion and the .ion in MgO
demonstrates qualitative agreement with our results, see Fig. 6. Although the
theoretical curve has to have two maxima, the first one is very sharp and cannot be
resolved by the Fourier transformation. The difference AP?(r) defined by:

AP*(r) = Pixep(r) — Picr(r) (13)

where PZyp(r) is the experimental electron density and P2.z(r) is the free ion
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aPe2]

-12 Ll

Fig. 6. The radial electron density distribution for Mg?* obtained as Fourier transform of the atomic
scattering factor by Burley [207 and the differences 4P?%(r) defined by Egs. (12) and (13).
Pix®
P%,0 > Burley [20]; x AP?, this paper
AP* o

Hartree-Fock density both obtained by Burley, is also drawn in Fig. 6 together
with the difference AP?(r) defined by Eq. (12). The two curves are in qualitative
agreement. We have however smoothed somewhat the experimental results.
Burley finds additionally a sharp maximum of AP%(r) for r=~02A. Another
experimental investigation also shows the expansion of the cations and the contrac-
tion of the anions. Schoknecht [21] has compared from his X-ray investigations of
the electron density distribution in NaCl Pyp(r) and P3cg(r) (free ion) for the
anion and the cation. In Fig. 7 the difference between SCF calculations and the
experimental values of P%(r), Eq. (13), is compared with AP?(r) from our calcu-
lations, Eq (12). Again a qualitative agreement is found.

There is another possibility to indicate the contraction and the expansion of
the anions and the cations resp. One can compare the integral over the atomic
scattering factor with the mean reciprocal radius of the ion using the Obata-
Silverman rule [22]. Such a comparison was made by Ruffa [23] who used the
experimental results of Burley [20]. He concludes an expansion of Mg>" in MgO.

2. The Diamagnetic Susceptibility

The diamagnetic susceptibility can be calculated for free ions and for ions in
crystals. The experiment on the other side gives only the total susceptibility of
the crystal, that is:

> [ (cation) + x;(anion)] .

ij
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Fig. 7. Comparison between the radial deformation of Cl~ calculated here and the experiment.
© Schoknecht [21], x this paper

To obtain the individual ionic susceptibilities from the crystal susceptibility
measured, an empirical partition of the sum into a cation and an anion part has
to be made. Different approaches of extracting the ionic susceptibility from
experimental values have been used. A critical review of the methods is given by
Myers [24]. Today the ion susceptibility set of Brindley and Hoare [25] is
generally accepted in the literature. These authors have used the calculated
susceptibilities for the free Li* ion (yy (calcul) = —0.7x 1079 [em®/Mol]) as
standard. With the assumption that the influence of the crystal field on y(Li")
is negligible, the y-values for the halogen ions are extracted from the measurements
on crystalline lithium halides. Then with y(F"), y(Cl") etc., the susceptibilities of
the remaining alkali and alkaline earth ions can be calculated. Another method
was used by Klemm [26] to obtain the ionic susceptibilities. Klemm has fixed
the y-values of the halogen ions and alkali ions under the assumption that the

relation: _ ~
Xtheor.(Cl )/Xtheor.(A) = Xexp. (Cl )/Xexp.(A)

is valid. In view of the observation of the expansion of the cations and the contrac-
tion of the anions in the lattice, compared with the free ions, this method seems to
be questionable. Table 3 gives the free ion and the SPI y-values calculated from
the corresponding wave functions given in Tables 1 and 2. Furthermore y (Brindley-
Hoare) and y(Klemm) are listed in this table, too®.

A semi-theoretical method for the evaluation of the individual ion susceptibili-
ties from the susceptibilities measured was done by Trew and Husain [27]. These

! The diamagnetic susceptibility is given in urﬁts of —107¢ [cm?/Mol].
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Table 3. The diamagnetic susceptibility of the free ions and the spherical potential ions calculated with

the wave functions of Table 1 and 2. For comparison the values of Brindley and Hoare [25] (Br.-Ho.) and

of Klemm [26] (K1.) are given. The radii ry of the potential well for each ion are chosen equal to the ionic
radii of Pauling [12]. y is given in units of —10~¢ [cm3/Mol}

Ton Xeree Xro 7z (Br-Ho) x(KL)
Li* 0.706 0.741 0.7 0.6
Be2* 0.367 0473 — 04
02~ - 15.750 — 12
F~ 12.635° 10.895° 94 11.0
Na* 5.082° 5.122b 6.1 4.6
Mg+ 3.737 3.881 43 3.0
APt 2.880 3.139 — 2
s~ 55.486 35.177 — (38)*
cr- 30.300 27.239 242 26.0
K" 15.488 15.717 14.6 12.9
Ca?* 12.230 12.916 10.7 8.3
Sc3t 9.969 11.115 — —
Ti** 8.335 10.334 — 5

 Estimated. — * Sachs [2] has calculated the following values for y: F~: y (free)= 12.665,
¥ (ro;=2.57 a.w) = 11.784; Na': y (free) = 5.0816, y (ro; = 1.795 a.u) = 5.1539.

authors measured the susceptibility of KCl (and other salts). Then from SCF free
ion electron distributions, y was calculated for K™ and ClI". The ion radii of K*
and CI” have been used as cut off radii. From the ratio:

/

Xexp.(C17) = Xy (KC) I:Z fr2P%- drp:l / |:Z [r2P%-dr,+ Y [r2Pg+ drp]
p O p O p O

where r" and r” are the ionic radii of C1~ and K resp. and PZ(r) the radial electron
density of the ion X, the ion susceptibilities have been evaluated. This method
however has some disadvantages. A considerable amount of the susceptibility of
an ion is given by the electrons outside of the ionic radius. In Table 4 some of the
susceptibility values calculated here are divided up into the part within the radius
o> Xin» annd the part outside of the radius, y,,. The results of Table 4 show quite
clearly, that Watson’s [ 1] proposal, to neglect the out-part of the wave functions,
is not meaningful in calculations of physical properties, which depend on " of high
power n. An improvement of the semi-empirical method of Trew and Husain [27]
would be a renormalization of the Hartree-Fock wave functions in a similar way

Table 4. Contribution to the diamagnetic susceptibility from electrons in- and outside a hollow sphere
with the radius ry for the free ions and SP-ions. y is given in units of —10~° [cm?/Mol]

Ton Li* Na*t K* F~ s Ccl”

o 1.134 1.795 2.513 2.570 3.477 3.420

Free 0.47858 435533 12.95877 8.75418 23.26569 21.98042
Zin  opp 0.47802 4.36478 12.93945 8.85258 25.72380 22.04688

Free 0.22708 0.72714 2.52941 3.88054 32.22034 8.31980
Xout

SPI 0.26309 0.75754 277794 2.04229 9.45273 5.19251
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as done by Hartmann and Kohlmaier [28] in their calculation of polarizabilities
of ions. But since through the renormalization the self consistency is lost, the wave
functions and the physical properties computed using such a method are not
strictly comparable with the SCF-values.

As already discussed, the radial electron density of the spherical potential ions
depends strongly on the radius r, of the charged hollow sphere and consequently
the diamagnetic susceptibility y is also a function of r,. Fig. 8 gives an example
for a cation (Ca?") and an anion (CI").

.
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Fig. 8. The diamagnetic susceptibility of Ca%?" and Cl™ as a function of the hollow sphere radius rq.
The free ion values of Ca?* and CI~ are —12.23 x 107 [em®/Mol] and —30.30x 10~ % [ecm?/Mol]
respectively

3. The Dipole Polarizability

For the dipole polarizability the same problem arises as for y in dividing up
the measured value in an anionic and cationic part. To our knowledge the best
attempt made is that of Tessman, Kahn and Shockley [29], which consists in
making a least squares fit for the experimental refraction data and assuming an
initial value for the Li* ion for the dipole polarizability. This method is comparable
with Brindley and Hoare’s procedure for the calculation of diamagnetic suscepti-
bilities of individual ions. The additivity rule for a,, which is here of the same im-
portance as in the discussion of y, is proved by considering the Lorentz factor L.
For non overlapping ions L is equal 4n/3. Tessman et al. [29] found for the alkali
halides that the best fitting of o, results in taking L equal 4n/3. Of course for some
other salts they found deviations for L from 4n/3, indicating strong overlapping.
Nevertheless they assume additivity of the individual ion polarizabilities.

The experimental values of Tessman et al. [29] are given in Table 5 along with
the computed polarizabilities, using the free ion wave functions and the SPI wave
functions, the values of Hartmann and Kohlmaier [28] and of Langhoff and
Hurst [14]. The SPI polarizabilities are in substantial agreement with those of
Tessman et al. They also agree with the values of Hartmann and Kohlmaier.
A comparison of our values and the polarizabilities calculated by Hartmann and
Kohlmaier indicates that for almost all the ions the values of Hartmann and
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Table 5. Dipole polarizabilities. TKS: Tessman et al. [29]; HK: Hartmann and Kohlmaier [28];
LH: Langhoff and Hurst [141; F: free ions (this paper); SPI: spherical potential ions (this paper).
The a,’s are given in units of A®

Ion TKS HK LH F SPI
Li* 0.03 0.02 0.0304 0.02612 0.02881
Be2* — 0.01 0.00815 0.00708 0.01172
(o 2.12 1.4-19 65.9 — 1.743
134.3
F 0.76 0.78 1.89 1.310 0.8290
Na® 0.26 0.18 0.165 0.1517 0.1556
Mgt — 0.08 0.0812 0.07638 0.08590
AR — 0.04 0.0453 0.04325 0.05570
s?” 5.1° 3.9-49 — 30.80 7.798
cr 297 2.6 6.61 6.717 4753
K* 1.20 0.83 1.14 1.323 1.392
Ca?* 1.1 0.41 0.652 0.7684 09178
Sc3* — 0.22 0411 0.4867 0.7025
Ti** — — 0.276 0.3243 0.6558

* Arithmetical mean of the dipole polarizability of 0%~ in Li,O, CaO, SrO, BaO and ZnO.
b Arithmetical mean of the dipole polarizability of S2~ in Ca$, SrS, BaS and ZnS.

Kohlmaier are smaller than ours. We think that this is due to the overestimation
of the lattice effects by their model. In the fifth column of Table 5 the free ion
values are given, which are to be compared with the polarizabilities of Langhoff
and Hurst. The differences which occur are not significant.

The polarizability of Li" and Be2" calculated by Cohen and Roothaan [30, 31]
(not given in Table 5) is 0.0280 A3 and 0.00765 A3 resp. They obtained them by
solving the Hartree-Fock equation which involves the perturbing electric field.
This very accurate calculation yields results lying closely to the free ion values in
Table 5. Of special interest are the free ion values for a, for O?~ and S*7, which
are 65.9 A3 and 30.80 A% resp. These very high polarizabilities result from the
diffuse distribution of the p-electrons indicated in the positive p-orbital energies.
This is so much the more the p-orbital contribution to the polarizability amounts
over 99% of the total value. The superposed potential reduces this effect and a

.\. ./'
04 , / &0
_free ion value
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02 -—- 50
w12 4 16 18 26 28 30 32 34 356 38
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Fig. 9. The dipole polarizability of Ti*" and S2~ as a function of the charged hollow sphere radius r,.
The free ion values are 0.3243 A® and 30.799 A3 respectively
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“bounding” of the p-electron results. The polarizability decreases to 7.798 A3
for S27, quite a reasonable value in comparison with the experiment.

In Fig. 9 the dependence of a, of the SPI is shown as a function of the charged
hollow sphere radius r, for Ti*" and S?".

4. The Antishielding Factor

The experimental evidence shows that generally the y,-values for the free
cations agree with the estimations from the experiments fairly well. However for
the anions agreement between y, (calculated) and y, (“measured”) is rather
unsatisfying. This problem is discussed extensively by Burns and Wikner [19]
and newer results on experimental determinations of coupling constants may be
found in the review article of Weiss [32]. Burns and Wikner therefore explored
the influence of the condensation of the ions into the lattice on y,,. The authors
investigated the ions O?~, F~ and Cl~ using for the calculation of y,, (crystal ion)
the wave functions of Watson [1], Yamashita and Kojima [3] and Yamashita [33].
For CI” Burns and Wikner scaled the free ion wave functions of Hartree and
Hartree (for reference see [19]). The Brindley and Hoare susceptibility of Cl~
was used for scaling the 3p-orbital of the free ion. Extensive calculations of y,, for
many free ions are found in [14] showing the importance of the quality of wave
functions for these calculations.

In Table 6 the antishielding factors of Langhoff and Hurst [14] are given together
with the results of Burns and Wikner [197. The effect of the wave functions on y,,

Table 6. The antishielding factor y,. LH: Langhoff and Hurst [14]; F: free ions (this paper); BW : Burns
and Wikner [197; SPI: spherical potential ions (this paper)

Ion LH F BW SPI
Li* 0.2570 0.2591 0.2711
0.2567
Be?* 0.1857 0.1836 0.1899
0% —429.4 — 2822 — 9.056
—950.5 — 2530
— 3390
F~ — 23.03 — 21.96 — 66.86 —10.62
— 2215 — 2322
— 212 — 2571
— 2200 — 2111
Na* — 4514 —  4.580 — 4747
— 4505 '
— 4497
Mg?>* — 3.038 — 3.078 — 3.628
AR* — 2236 — 2282 — 3217
s —197.1 —37.64
Ccr — 66.56 — 57.80 —1585 = —3790
— 5391 — 5007
— 27.04
K* — 1217 — 2143 —22.83
Ca?"t - 1212 — 16.94 —20.58
Sc3* — 9461 — 1421 —20.34
Ti** — 1721 — 12,50 —25.51

28 Theoret. chim. Acta (Berl) Vol. 13
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Fig. 10. The dependence of the antishielding factor of F~ and Cl” upon the charged hollow sphere
radius r,. The free ion values are —21.96 and —57.80 respectively

is shown by the different values of y,, for the same ion. In column 3 and 5 indicated
by F and SPI, the y,-values for our free ion wave functions and the spherical
potential ions resp., are given. As expected, the influence of the crystal field on
the antishielding factor is considerably due to the radial deformation of the electron
distribution. This solid state effect on y,, amounts for the small ions a few percent
increasing with the number of electrons.

For AI*" one determines a change of about 40% from the free ion value. The
change of the free ion y,, of the anions is quite high. For the oxygen ion O2~ the
frec ion antishielding factor calculated by Langhoff and Hurst [14] is —429.4
and —950.5, the first value obtained using the wave functions of McLean (for
reference see [14]) and the second those of Clementi and McLean (for reference
see [14]). These very extreme values of y,, result from the difficulty in getting
meaningful Hartree-Fock wave functions. For the free O?~ ion the SCF calcula-
tion yields very diffuse p-orbitals since this ion is unstable in the free state. Only
the consideration of the stabilizing lattice potential yields reasonable wave
functions and consequently meaningful calculations of ¥, o, and 7y,,.

As already expected from the results of our model calculations on y and «,
the values of y,, (SPI) depend on the radius r, of the spherical potential well. In
Figs. 10 and 11 this dependence is shown for C1”and F~ and AI** and Na™ respec-
tively. Again the difficulty in chosing an appropriate value for r, can be seen.
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Fig. 11. The dependence of the antishielding factor of A1** and Na* upon the hollow sphere radius r.
The free ion values are —2.282 and —4.580 respectively
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5. The Choice of the Hollow Sphere Radius

Since the SP-model is an electrostatic one, the choice of the radii should be
supported by considering the potential in the crystal. We have calculated the
electrostatic potential at the site of a Na'-vacancy and a Cl™-vacancy in the NaCl-
lattice. The sodium vacancy has a surrounding of 6 C1™-ions placed at the corners
of a regular octahedron; the distance between the center of the vacancy and the
next Cl -ions is a,/2 (a, = lattice constant of NaCl = 5.64 A = 10.66 a.u.). For
the Cl -vacancy the same geometrical arrangement is valid.

Consider the potential around a Hartree-Fock ion. In Fig. 12 this potential is
shown for the free Cl -ion, the free Na™-ion and SP-ions with different SP-radii r,.
The potential of an atom at the distance r from the nucleus is given by

Vir) = —f« - % j P2y dr — J o 2(:',) ar (14)

From Fig. 12 it can be seen that the potential of the ions Na* and C1  is largely a
pure 1/r-potential for » = 5 a.u. Therefore the electrostatic potential at the center
of an ion vacancy in the NaCl-lattice can be calculated from the point charge
model (Madelung’s model). In NaCl the Madelung potential is

e
Vu= =t = +0.328 a.u.
ap/2
where « is Madelung’s constant.
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Fig. 12. Electrostatic potential of the Na*- and Cl -ion. For C1 the free ion potential (a), and the SP-
ions with ry =4.441 a.u. (b), and r, = 2.740 a.u. (c), are shown. The values of V calculated from Eq. (14)
are marked by points (...), the crosses { x x x ) are calculated from ¥ = 1/r and V = — 1/r respectively

28%
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The electrostatic potential Vy,, along the vector Cl -vacancy — Cl~ and
Na*-vacancy— Na* (along [ 100]) was calculated by summing up the contributions
of the six ions at the corners of the octahedron. The potential of the rest of the
infinite lattice was taken into account by a sphere with a radius of about 6.4 a.u.,
centered at the vacancy, and carrying a charge of +5e. The results of this cal-
culations are shown in Fig. 13. Determinations of the potential along the [110]
direction do not alter the results remarkably. It is interesting to note that within
the next nearest neighbors octahedron a large volume of constant potential exists.

From Fig. 13 a potential |V| of 0.328 a.u. follows for Hoth ions, Na™ and CI°,
in the NaCl-lattice. For the SP-ions Na™ and Cl~ therefore a radius of 3.05a.u.
has to be choosen for the sphere charged with + e. This would be a first approxima-
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Fig. 13. The potential trough in the NaCl-lattice along [100]. I. The potential around the Cl -vacancy.

IL. The potential around the Na*-vacancy; a) free Cl™-ions as next nearest neighbors; b) SP-ions,

ro=4.441 au.; c) SP-ions, ro =2.740a.u. III. The potential function used for the calculation of the
SP-ion wave function, ry=2.362 a.u.

tion to ry. It can be seen immediately, that this radius r, changes from substance
to substance. For KCl for instance a radius of 3.39 a.u. is calculated from the
Madelung model, corresponding to an increase of 11 % in the SP-radius r, of C1'.
However the influence of such a change in r, on y and «, is fairly small (Fig. 8)
and probably within the experimental uncertainty. Since the consideration of
the Hartree-Fock charge distribution has altered the shape of the potential curves
compared with the Madelung potential?, the hollow sphere radius of the SP-ions
should be choosen from these calculations. :

The potential within the 6 Cl -octahedron is practically constant within a
sphere with a radius of 2.5 a.u. (Fig. 13). Using this radius in our SP-model a
potential of 0.400 a.u. within the well results. Pauling’s radius for the Na*-ion is
about 30 % smaller than this radius. The discrepancy to the radius given by Tosi
[34] and by Witte and Wolfel [35] is about 10%. The radius of the sphere of
constant potential at the site of the Cl -vacancy is about 2.7 a.u. from which a

2 The use of SP-wave functions has flattened the potential curve around the Na'-vacancy.

Considering the Cl™-vacancy, no noticeable change in the potential trough due to the use of SP-wave
functions was observed.
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potential of 0.370 within the SP-well follows. The ionic radii given by Pauling
and by Witte and Wolfel deviate 25% and 15% resp. from this value..

It should be remarked that neither the radii r, choosen for the potential well
coincide necessarily with the ion radii nor coincides the sum of the ion radii with
the sum of the potential well radii. In the one case one deals with potential well
radii, in the other with radii determined by the electron density distribution. The
SP-model for the ions in the lattice changes the wave functions in such a manner
that the physical properties y, o, and y,, calculated for the SP-ions approach the
experimental values fairly well. The choice of potential well radii which are larger
than the classical ionic radii of the cations and smaller than the ionic radii of the
anions is supported by simple electrostatic arguments and by calculating the
physical properties discussed in this paper. The disadvantages of our model are a)
the fairly bad approximation of the actual potential outside the hollow sphere
and b) the use of equal potential functions (besides the sign) for both the anions and
the cations. A further investigation of the actual potential in other crystals than
NaCl (change of the ions and the lattice type) would probably be of interest.

V. Conclusiqns

The application of a simple “crystal model” shows that physical properties
of ions which depend on the radial distribution of electron may be calculated from
this model with reasonable good success. The agreement between theory and ex-
periment is considerably improved by introducing a spherical potential well.
Particularly the difficulties in calculating y, o; and y,, for X2~ ions (O%~ and S?7)
are removed by the model. The well-founded fact that the cations expand and the
anions contract owing to the lattice potential is reproduced by the model used.
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